Properties

Label 85996339200000000.hn.2._.C
Order $ 2^{24} \cdot 3^{8} \cdot 5^{8} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5^8.C_2\wr C_4.C_2^2$
Order: \(42998169600000000\)\(\medspace = 2^{24} \cdot 3^{8} \cdot 5^{8} \)
Index: \(2\)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Generators: $\langle(13,15,14)(17,18,20)(23,24,25)(27,29,30)(32,33,34)(37,38)(39,40), (3,4,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and nonsolvable. Whether it is a direct factor, a semidirect factor, or rational has not been computed.

Ambient group ($G$) information

Description: $A_5^8.C_4^2.(C_4\times D_4)$
Order: \(85996339200000000\)\(\medspace = 2^{25} \cdot 3^{8} \cdot 5^{8} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(343985356800000000\)\(\medspace = 2^{27} \cdot 3^{8} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ Group of order \(343985356800000000\)\(\medspace = 2^{27} \cdot 3^{8} \cdot 5^{8} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed