Properties

Label 8599633920000.bt.512._.A
Order $ 2^{12} \cdot 3^{8} \cdot 5^{4} $
Index $ 2^{9} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(16796160000\)\(\medspace = 2^{12} \cdot 3^{8} \cdot 5^{4} \)
Index: \(512\)\(\medspace = 2^{9} \)
Exponent: not computed
Generators: $\langle(22,28,26,24)(23,25,27,30)(32,35,34)(33,37,39)(36,38,40), (1,3,4,8,7)(2,9,6,10,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and perfect (hence nonsolvable). Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_6^4.D_4.C_2^3.D_4$
Order: \(8599633920000\)\(\medspace = 2^{21} \cdot 3^{8} \cdot 5^{4} \)
Exponent: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^6:D_4$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^9.D_4^2$, of order \(32768\)\(\medspace = 2^{15} \)
Outer Automorphisms: $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
Derived length: $3$

The quotient is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(17199267840000\)\(\medspace = 2^{22} \cdot 3^{8} \cdot 5^{4} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed