Properties

Label 84934656.br.20736._.D
Order $ 2^{12} $
Index $ 2^{8} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}$
Order: \(4096\)\(\medspace = 2^{12} \)
Index: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(11,12)(17,18)(25,26)(31,32), (19,20)(21,22)(23,24)(25,26)(27,28)(29,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor, a semidirect factor, or almost simple has not been computed.

Ambient group ($G$) information

Description: $C_2^{16}.C_6^2.S_3^2$
Order: \(84934656\)\(\medspace = 2^{20} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_6^2:\POPlus(4,3)$
Order: \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_{55}:F_{11}$, of order \(2985984\)\(\medspace = 2^{12} \cdot 3^{6} \)
Outer Automorphisms: $C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(8153726976\)\(\medspace = 2^{25} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ Group of order \(644\!\cdots\!000\)\(\medspace = 2^{66} \cdot 3^{8} \cdot 5^{3} \cdot 7^{4} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31^{2} \cdot 73 \cdot 89 \cdot 127 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed