Properties

Label 8400.i.8.c1.b1
Order $ 2 \cdot 3 \cdot 5^{2} \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{105}$
Order: \(1050\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 279 \end{array}\right), \left(\begin{array}{rr} 33 & 0 \\ 0 & 370 \end{array}\right), \left(\begin{array}{rr} 0 & 2 \\ 211 & 0 \end{array}\right), \left(\begin{array}{rr} 48 & 0 \\ 0 & 307 \end{array}\right), \left(\begin{array}{rr} 79 & 0 \\ 0 & 16 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{420}:C_{10}$
Order: \(8400\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{210}.C_6.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_4\times F_5\times S_3\times F_7$
$W$$D_{105}$, of order \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{20}\times D_{105}$
Normal closure:$C_5\times D_{210}$
Core:$C_5\times C_{105}$
Minimal over-subgroups:$C_5\times D_{210}$
Maximal under-subgroups:$C_5\times C_{105}$$C_5\times D_{35}$$C_5\times D_{21}$$D_{105}$$C_5\times D_{15}$
Autjugate subgroups:8400.i.8.c1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{420}:C_2$