Properties

Label 8400.i.10.g1.a1
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 7 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{105}:D_4$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 199 & 0 \\ 0 & 104 \end{array}\right), \left(\begin{array}{rr} 33 & 0 \\ 0 & 370 \end{array}\right), \left(\begin{array}{rr} 176 & 0 \\ 0 & 122 \end{array}\right), \left(\begin{array}{rr} 27 & 0 \\ 0 & 291 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 112 & 0 \\ 0 & 312 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{420}:C_{10}$
Order: \(8400\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{210}.C_6.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_4\times C_2\times S_3\times F_7$
$W$$D_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$D_{84}:C_{10}$
Normal closure:$D_{210}:C_{10}$
Core:$C_2\times C_{210}$
Minimal over-subgroups:$D_{210}:C_{10}$$D_{84}:C_{10}$
Maximal under-subgroups:$C_2\times C_{210}$$C_5\times D_{42}$$C_{105}:C_4$$C_{35}:D_4$$C_{21}:D_4$$C_{15}:D_4$
Autjugate subgroups:8400.i.10.g1.b1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_2\times D_{210}$