Properties

Label 840.47.12.a1.a1
Order $ 2 \cdot 5 \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{70}$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $b^{10}, c^{3}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{21}:D_{20}$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times F_5\times F_7$
$\operatorname{Aut}(H)$ $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{210}$
Normalizer:$C_{21}:D_{20}$
Minimal over-subgroups:$C_{210}$$C_7\times D_{10}$$D_{70}$$C_7:C_{20}$
Maximal under-subgroups:$C_{35}$$C_{14}$$C_{10}$

Other information

Möbius function$-2$
Projective image$C_{15}:D_{14}$