Subgroup ($H$) information
Description: | $C_7$ |
Order: | \(7\) |
Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Exponent: | \(7\) |
Generators: |
$c^{10}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_{35}:S_4$ |
Order: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_5:S_4$ |
Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Automorphism Group: | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6\times F_5\times S_4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{35}:S_4$ | |||
Normalizer: | $C_{35}:S_4$ | |||
Complements: | $C_5:S_4$ | |||
Minimal over-subgroups: | $C_{35}$ | $C_{21}$ | $C_{14}$ | $C_{14}$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $60$ |
Projective image | $C_5:S_4$ |