Properties

Label 840.118.12.b1.a1
Order $ 2 \cdot 5 \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_7$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $ab^{385}, b^{60}, b^{252}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_5\times D_{84}$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^4\times C_{12})$
$\operatorname{Aut}(H)$ $C_4\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_4\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times D_{14}$
Normal closure:$C_5\times D_{42}$
Core:$C_{35}$
Minimal over-subgroups:$C_5\times D_{21}$$C_5\times D_{14}$
Maximal under-subgroups:$C_{35}$$D_7$$C_{10}$
Autjugate subgroups:840.118.12.b1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_{84}$