Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Exponent: | \(2\) |
Generators: |
$b^{7}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_2\times F_7$ |
Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $F_7$ |
Order: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Automorphism Group: | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2\times F_7$ | ||
Normalizer: | $C_2\times F_7$ | ||
Complements: | $F_7$ $F_7$ | ||
Minimal over-subgroups: | $C_{14}$ | $C_6$ | $C_2^2$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $-7$ |
Projective image | $F_7$ |