Subgroup ($H$) information
| Description: | $C_3^2$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Exponent: | \(3\) |
| Generators: |
$\langle(2,12,3)(4,13,15)(11,16,14), (1,7,8)(5,10,6)(9,17,18)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $C_2\times C_6^4.C_3^4:C_4$ |
| Order: | \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^5:(\He_3^2:C_4)$ |
| Order: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Automorphism Group: | $C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \) |
| Outer Automorphisms: | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(90699264\)\(\medspace = 2^{9} \cdot 3^{11} \) |
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $W$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
| Centralizer: | $C_6^4.C_3^4.C_2$ |
| Normalizer: | $C_2\times C_6^4.C_3^4:C_4$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2\times C_6^4.C_3^4:C_4$ |