Properties

Label 839808.cn.6561.a1.a1
Order $ 2^{7} $
Index $ 3^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6561\)\(\medspace = 3^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\langle(1,5)(2,6)(3,4)(7,11)(8,12)(9,10)(13,18)(14,17)(15,16)(19,23)(20,24)(21,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $3$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^8:(C_4^2.D_4)$
Order: \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^8:\SD_{16}.C_2\wr D_4$, of order \(13436928\)\(\medspace = 2^{11} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_3^8:(C_4^2.D_4)$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$6561$
Möbius function not computed
Projective image not computed