Properties

Label 832.1099.208.b1
Order $ 2^{2} $
Index $ 2^{4} \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(208\)\(\medspace = 2^{4} \cdot 13 \)
Exponent: \(2\)
Generators: $b, d^{26}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_{26}.C_4^2$
Order: \(832\)\(\medspace = 2^{6} \cdot 13 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{26}:C_4$
Order: \(208\)\(\medspace = 2^{4} \cdot 13 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Automorphism Group: $D_4\times F_{13}$, of order \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^4\times C_{26}).C_6.C_2^5$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(19968\)\(\medspace = 2^{9} \cdot 3 \cdot 13 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_{26}.C_4^2$
Normalizer:$D_{26}.C_4^2$
Minimal over-subgroups:$C_2\times C_{26}$$C_2^3$$C_2^3$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$D_{26}:C_4$