Properties

Label 82944.bd.2.B
Order $ 2^{9} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Index: \(2\)
Exponent: not computed
Generators: $\langle(5,7,6)(10,16,14), (9,16)(10,14)(11,12)(13,15), (1,6)(2,3)(4,8)(5,7)(9,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2:\POPlus(4,3)$
Order: \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2\wr C_2.C_4.D_4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_4^2:\POPlus(4,3)$
Complements:$C_2$
Minimal over-subgroups:$A_4^2:\POPlus(4,3)$
Maximal under-subgroups:$C_2^8.C_3^4$$C_2^2:A_4^2.S_4$$C_2^8.C_3^3.C_2$$C_2^8.C_3^3.C_2$$C_2^6.C_3^3.D_4$$C_2^8.C_3^3.C_2$$C_2^8.C_3^3.C_2$$A_4^3:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed