Properties

Label 8192.zt.32.D
Order $ 2^{8} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:(C_2\times C_{16})$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $bg, ch, d^{2}g, f^{7}hi$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_4^3.(C_2\times D_4^2)$
Order: \(8192\)\(\medspace = 2^{13} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4:C_2^2$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Outer Automorphisms: $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(16777216\)\(\medspace = 2^{24} \)
$\operatorname{Aut}(H)$ $C_2^6.C_2^5.C_2^3$
$W$$(C_2^3\times C_4) . C_2^4$, of order \(512\)\(\medspace = 2^{9} \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_4^3.(C_2\times D_4^2)$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$C_4^2.(C_2\times D_4^2)$