Properties

Label 8192.vf.4.a1.a1
Order $ 2^{11} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{128}:C_8$
Order: \(2048\)\(\medspace = 2^{11} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 222 & 0 \\ 0 & 22 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 197 & 0 \\ 0 & 227 \end{array}\right), \left(\begin{array}{rr} 4 & 0 \\ 0 & 193 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 129 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 215 & 0 \\ 0 & 104 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $7$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{32}.D_{128}$
Order: \(8192\)\(\medspace = 2^{13} \)
Exponent: \(256\)\(\medspace = 2^{8} \)
Nilpotency class:$8$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{64}.C_8.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_{64}.C_8.C_2^3.C_2^4$
$W$$D_{128}$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_{32}$
Normalizer:$C_{32}.D_{128}$
Minimal over-subgroups:$D_{128}:C_{16}$
Maximal under-subgroups:$D_{128}:C_4$$C_8\times C_{128}$$C_{128}.C_8$$D_{64}:C_8$$C_8.D_{64}$

Other information

Möbius function$0$
Projective image$D_{64}:C_4$