Properties

Label 81000.t.18.h1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: not computed
Generators: $ab^{3}c^{2}e^{2}, d^{3}e^{6}, e^{10}, c^{10}, b^{6}d^{6}e^{3}, e^{3}, c^{3}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^3.C_2^2.C_2$
Normal closure:$C_{15}\wr C_3:C_4$
Core:$C_5^3:C_6$
Minimal over-subgroups:$(C_5\times C_{15}^2).C_{12}$$C_5^3.C_6^2.C_2$
Maximal under-subgroups:$C_3^2\times C_5^2:D_5$$(C_5\times C_{15}):F_5$$(C_5\times C_{15}):F_5$$C_{15}^2:C_4$$C_{15}^2:C_4$$C_{15}^2:C_4$$C_{15}^2:C_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}\wr S_3:C_4$