Properties

Label 81000.bb.54.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{3} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\times D_5^2$
Order: \(1500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{3} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ad^{21}e^{14}f^{5}, e^{3}, f^{10}, f^{3}, cde^{5}f^{5}, d^{6}e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.S_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_5:F_5.C_2^3.C_2^2$
$W$$D_5\wr C_2$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_5^3:(C_3:D_4)$
Normal closure:$C_{15}^3.S_4$
Core:$C_5^3$
Minimal over-subgroups:$C_{15}\times D_5\times D_{15}$$C_5^3:(C_3:D_4)$
Maximal under-subgroups:$C_5^2:C_{30}$$C_5^2:C_{30}$$C_5\times D_5^2$$C_{15}\times D_{10}$$C_3\times D_5^2$

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$0$
Projective image$C_{15}^3.S_4$