Properties

Label 81000.b.50.a1
Order $ 2^{2} \cdot 3^{4} \cdot 5 $
Index $ 2 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_3^3:A_4$
Order: \(1620\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $a^{2}, d, b^{5}c^{15}de^{10}, c^{15}d, b^{2}c^{24}e^{12}, e^{10}, c^{20}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_5^3:S_3\wr C_3$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_{10}^2.C_5.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$W$$S_3\wr C_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_3^3:(D_5\times A_4)$
Normal closure:$C_3^3:(C_{10}^2:C_{15})$
Core:$C_{15}:S_3^2$
Minimal over-subgroups:$C_3^3:(C_{10}^2:C_{15})$$C_3^3:(D_5\times A_4)$
Maximal under-subgroups:$C_{15}:S_3^2$$C_3^3:C_{15}$$C_3^3:A_4$$C_5\times A_4$

Other information

Number of subgroups in this autjugacy class$25$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_5^3:S_3\wr C_3$