Properties

Label 800.839.16.d1.b1
Order $ 2 \cdot 5^{2} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $ab^{5}c^{10}, c^{4}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^3$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^2\times C_4^2\times C_2^2\wr C_2)$
$\operatorname{Aut}(H)$ $C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\operatorname{res}(S)$$C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_{20}\times D_{10}$
Normal closure:$C_5\times D_{10}$
Core:$C_5^2$
Minimal over-subgroups:$C_5\times D_{10}$$C_5\times D_{10}$$C_5\times D_{10}$
Maximal under-subgroups:$C_5^2$$C_{10}$$D_5$
Autjugate subgroups:800.839.16.d1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{10}:Q_8$