Properties

Label 800.814.160.c1.a1
Order $ 5 $
Index $ 2^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(5\)
Generators: $b^{8}c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2\times C_{20}.C_{20}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2\times C_4^2\times C_2\wr C_2^2)$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{10}\times C_{20}$
Normalizer:$C_2\times C_{10}\times C_{20}$
Normal closure:$C_5^2$
Core:$C_1$
Minimal over-subgroups:$C_5^2$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:800.814.160.c1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2\times C_{20}.C_{20}$