Properties

Label 800.1168.200.c1
Order $ 2^{2} $
Index $ 2^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $bd^{9}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^3$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times D_5).C_2^5.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{20}$
Normalizer:$C_2^3\times C_{20}$
Normal closure:$C_5:C_4$
Core:$C_2$
Minimal over-subgroups:$C_5:C_4$$C_{20}$$C_2\times C_4$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$40$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$-8$
Projective image$C_{10}^2:C_2^2$