Properties

Label 800.1159.4.h1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_5^2$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac^{5}, c^{2}, d^{4}, d^{5}, d^{10}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{10}^2:C_2^3$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2^7.C_2^5)$
$\operatorname{Aut}(H)$ $D_4\times \GL(2,5)$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_4\times C_4^2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_{10}^2:C_2^3$
Complements:$C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_4:C_{10}^2$$C_{20}:D_{10}$
Maximal under-subgroups:$C_{10}^2$$C_5\times C_{20}$$C_5\times D_4$$C_5\times D_4$$C_5\times D_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$2$
Projective image$C_2^2\times D_{10}$