Properties

Label 798600.j.10.A
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times C_{11}\wr S_3$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 0 & 0 & 10 & 1 \\ 9 & 9 & 3 & 10 \\ 1 & 1 & 4 & 0 \\ 0 & 1 & 2 & 2 \end{array}\right), \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 3 & 8 & 9 & 0 \\ 10 & 10 & 2 & 0 \\ 10 & 10 & 8 & 5 \end{array}\right), \left(\begin{array}{rrrr} 5 & 9 & 0 & 5 \\ 4 & 5 & 1 & 0 \\ 1 & 3 & 8 & 2 \\ 5 & 1 & 7 & 8 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 1 & 0 \\ 2 & 10 & 6 & 1 \\ 10 & 0 & 0 & 0 \\ 8 & 10 & 9 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 6 & 4 & 0 \\ 2 & 2 & 7 & 0 \\ 2 & 2 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 8 & 3 & 1 & 0 \\ 9 & 0 & 6 & 6 \\ 1 & 1 & 1 & 8 \\ 7 & 7 & 6 & 2 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 9 & 8 & 5 & 0 \\ 8 & 8 & 1 & 0 \\ 8 & 8 & 2 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:(D_{12}\times C_5^2)$
Order: \(798600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(63888000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $C_{11}^2.C_{15}.C_{20}.C_2^4$
$W$$C_{11}^2:(S_3\times C_{10})$, of order \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$C_{11}^3:(D_{12}\times C_5^2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed