Properties

Label 79860.e.3993.a1
Order $ 2^{2} \cdot 5 $
Index $ 3 \cdot 11^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(3993\)\(\medspace = 3 \cdot 11^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 120 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}\times C_{11}\wr S_3$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{20}.C_2^4$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{22}\times C_{110}$
Normalizer:$C_{22}\times C_{110}$
Normal closure:$C_{10}\times C_{11}^2:S_3$
Core:$C_{10}$
Minimal over-subgroups:$C_2\times C_{110}$$C_2\times C_{110}$$C_2\times C_{110}$$C_5\times D_{22}$$S_3\times C_{10}$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_2^2$

Other information

Number of subgroups in this autjugacy class$33$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-11$
Projective image$C_{11}\wr S_3$