Properties

Label 79860.e.330.k1
Order $ 2 \cdot 11^{2} $
Index $ 2 \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{11}$
Order: \(242\)\(\medspace = 2 \cdot 11^{2} \)
Index: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 120 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 33 \\ 55 & 1 \end{array}\right), \left(\begin{array}{rr} 67 & 0 \\ 0 & 56 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{10}\times C_{11}\wr S_3$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{20}.C_2^4$
$\operatorname{Aut}(H)$ $C_{10}\times F_{11}$, of order \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
$W$$D_{11}$, of order \(22\)\(\medspace = 2 \cdot 11 \)

Related subgroups

Centralizer:$C_{11}\times C_{110}$
Normalizer:$C_{55}.C_{22}^2$
Normal closure:$C_{11}^2:S_3$
Core:$C_{11}^2$
Minimal over-subgroups:$D_{11}\times C_{11}^2$$D_{11}\times C_{55}$$C_{11}^2:S_3$$C_{11}\times D_{22}$
Maximal under-subgroups:$C_{11}^2$$C_{22}$$D_{11}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$C_{10}\times C_{11}\wr S_3$