Properties

Label 79860.e.2.b1
Order $ 2 \cdot 3 \cdot 5 \cdot 11^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{11}\wr S_3$
Order: \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)
Index: \(2\)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 60 & 78 \\ 64 & 61 \end{array}\right), \left(\begin{array}{rr} 67 & 0 \\ 0 & 56 \end{array}\right), \left(\begin{array}{rr} 89 & 0 \\ 0 & 89 \end{array}\right), \left(\begin{array}{rr} 60 & 43 \\ 64 & 60 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 111 & 33 \\ 55 & 12 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{10}\times C_{11}\wr S_3$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{20}.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{15}.C_{10}.C_2^4$
$W$$C_{11}^2:S_3$, of order \(726\)\(\medspace = 2 \cdot 3 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$C_{10}\times C_{11}\wr S_3$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{10}\times C_{11}\wr S_3$
Maximal under-subgroups:$C_{11}^2:C_{165}$$C_{11}^2:C_{110}$$C_{11}\wr S_3$$C_5\times C_{11}^2:S_3$$S_3\times C_{55}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$C_{11}^2:D_6$