Properties

Label 79860.e.132.a1
Order $ 5 \cdot 11^{2} $
Index $ 2^{2} \cdot 3 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times C_{55}$
Order: \(605\)\(\medspace = 5 \cdot 11^{2} \)
Index: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 81 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 67 & 0 \\ 0 & 56 \end{array}\right), \left(\begin{array}{rr} 78 & 33 \\ 55 & 45 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 11$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}\times C_{11}\wr S_3$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $S_3\times C_{22}$
Order: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Automorphism Group: $C_{10}\times D_6$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{20}.C_2^4$
$\operatorname{Aut}(H)$ $C_4\times C_{10}.\PSL(2,11).C_2$
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{11}^2\times C_{110}$
Normalizer:$C_{10}\times C_{11}\wr S_3$
Complements:$S_3\times C_{22}$
Minimal over-subgroups:$C_{11}^2\times C_{55}$$C_{11}^2:C_{15}$$C_{11}\times C_{110}$$D_{11}\times C_{55}$
Maximal under-subgroups:$C_{11}^2$$C_{55}$$C_{55}$$C_{55}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$6$
Projective image$C_{11}^3:D_6$