Subgroup ($H$) information
| Description: | $C_{11}\times C_{55}$ |
| Order: | \(605\)\(\medspace = 5 \cdot 11^{2} \) |
| Index: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Exponent: | \(55\)\(\medspace = 5 \cdot 11 \) |
| Generators: |
$\left(\begin{array}{rr}
81 & 0 \\
0 & 81
\end{array}\right), \left(\begin{array}{rr}
67 & 0 \\
0 & 56
\end{array}\right), \left(\begin{array}{rr}
78 & 33 \\
55 & 45
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 11$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{10}\times C_{11}\wr S_3$ |
| Order: | \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Quotient group ($Q$) structure
| Description: | $S_3\times C_{22}$ |
| Order: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Exponent: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Automorphism Group: | $C_{10}\times D_6$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Outer Automorphisms: | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^2.C_{15}.C_{20}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_4\times C_{10}.\PSL(2,11).C_2$ |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $6$ |
| Projective image | $C_{11}^3:D_6$ |