Properties

Label 792624.i.42._.H
Order $ 2^{3} \cdot 7 \cdot 337 $
Index $ 2 \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{337}:C_{56}$
Order: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Generators: $b^{84}, a^{4}b^{14154}, a^{7}b^{14175}, b^{14154}, a^{14}b^{10206}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{28308}.C_{28}$
Order: \(792624\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{2} \cdot 337 \)
Exponent: \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{42}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Automorphism Group: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{4718}.C_{21}.C_{24}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_{337}$, of order \(226464\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 337 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed