Subgroup ($H$) information
| Description: | $C_3\times C_{15}$ |
| Order: | \(45\)\(\medspace = 3^{2} \cdot 5 \) |
| Index: | \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \) |
| Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rrrr}
5 & 9 & 1 & 9 \\
5 & 3 & 6 & 1 \\
4 & 9 & 10 & 2 \\
1 & 4 & 6 & 8
\end{array}\right), \left(\begin{array}{rrrr}
9 & 0 & 0 & 0 \\
0 & 9 & 0 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & 9
\end{array}\right), \left(\begin{array}{rrrr}
2 & 8 & 1 & 4 \\
10 & 6 & 0 & 1 \\
9 & 2 & 4 & 3 \\
9 & 9 & 1 & 8
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_5\times \SL(2,11):D_6$ |
| Order: | \(79200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_4\times S_3\times D_4).\PSL(2,11).C_2$ |
| $\operatorname{Aut}(H)$ | $C_4\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $55$ |
| Möbius function | $0$ |
| Projective image | $\SL(2,11):D_6$ |