Properties

Label 79200.f.1760.a1.a1
Order $ 3^{2} \cdot 5 $
Index $ 2^{5} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{15}$
Order: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Index: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 5 & 9 & 1 & 9 \\ 5 & 3 & 6 & 1 \\ 4 & 9 & 10 & 2 \\ 1 & 4 & 6 & 8 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 2 & 8 & 1 & 4 \\ 10 & 6 & 0 & 1 \\ 9 & 2 & 4 & 3 \\ 9 & 9 & 1 & 8 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5\times \SL(2,11):D_6$
Order: \(79200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times S_3\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_4\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_6\times C_{60}$
Normalizer:$C_{10}.D_6^2$
Normal closure:$C_{15}\times \SL(2,11)$
Core:$C_{15}$
Minimal over-subgroups:$C_3\times C_{30}$$C_3\times C_{30}$$S_3\times C_{15}$$S_3\times C_{15}$$S_3\times C_{15}$$S_3\times C_{15}$$C_{15}:S_3$$C_{15}:S_3$$C_{15}:S_3$$C_{15}:S_3$
Maximal under-subgroups:$C_{15}$$C_{15}$$C_{15}$$C_3^2$

Other information

Number of subgroups in this conjugacy class$55$
Möbius function$0$
Projective image$\SL(2,11):D_6$