Properties

Label 792.94.66.e1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 30 & 0 \\ 0 & 38 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 37 & 0 \\ 0 & 29 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $D_{66}:C_6$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{11}:(C_2^2\times C_{10}\times S_3)$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6\wr C_2$
Normal closure:$D_{66}$
Core:$C_6$
Minimal over-subgroups:$D_{66}$$C_6\times S_3$$C_3:D_4$
Maximal under-subgroups:$C_6$$S_3$$C_2^2$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$C_3\times D_{66}$