Subgroup ($H$) information
| Description: | $D_{22}$ |
| Order: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Generators: |
$\left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right), \left(\begin{array}{rr}
42 & 0 \\
0 & 8
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 15
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $D_{66}:C_6$ |
| Order: | \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \) |
| Exponent: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_{11}:(C_2^2\times C_{10}\times S_3)$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| $\operatorname{res}(S)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \) |
Related subgroups
| Centralizer: | $C_6$ | ||
| Normalizer: | $C_{33}:D_4$ | ||
| Normal closure: | $D_{66}$ | ||
| Core: | $C_{22}$ | ||
| Minimal over-subgroups: | $D_{66}$ | $C_3\times D_{22}$ | $C_{11}:D_4$ |
| Maximal under-subgroups: | $C_{22}$ | $D_{11}$ | $C_2^2$ |
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $-1$ |
| Projective image | $C_3\times D_{66}$ |