Properties

Label 792.91.8.a1.a1
Order $ 3^{2} \cdot 11 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{33}$
Order: \(99\)\(\medspace = 3^{2} \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $a^{2}, b^{12}, b^{88}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{12}\times D_{33}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{33}.(C_2^4\times C_{10})$
$\operatorname{Aut}(H)$ $C_{10}\times \GL(2,3)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{132}$
Normalizer:$C_{12}\times D_{33}$
Complements:$C_2\times C_4$
Minimal over-subgroups:$C_3\times C_{66}$$C_3\times D_{33}$$C_3\times D_{33}$
Maximal under-subgroups:$C_{33}$$C_{33}$$C_{33}$$C_3^2$

Other information

Möbius function$0$
Projective image$C_4\times D_{33}$