Properties

Label 792.40.44.c1.b1
Order $ 2 \cdot 3^{2} $
Index $ 2^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ac^{9}, c^{176}, c^{132}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_9\times D_{22}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{30}.C_2^3$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{18}$
Normalizer:$C_2\times D_{18}$
Normal closure:$C_9\times D_{11}$
Core:$C_9$
Minimal over-subgroups:$C_9\times D_{11}$$C_2\times C_{18}$$D_{18}$$D_{18}$
Maximal under-subgroups:$C_9$$C_6$
Autjugate subgroups:792.40.44.c1.a1

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-2$
Projective image$D_9\times D_{22}$