Properties

Label 792.40.18.c1.a1
Order $ 2^{2} \cdot 11 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $ab, c^{18}, c^{99}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_9\times D_{22}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{30}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_{11}$, of order \(22\)\(\medspace = 2 \cdot 11 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_{22}$
Normal closure:$D_{198}$
Core:$C_{22}$
Minimal over-subgroups:$D_{66}$$C_2\times D_{22}$
Maximal under-subgroups:$C_{22}$$D_{11}$$D_{11}$$C_2^2$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$D_9\times D_{11}$