Subgroup ($H$) information
| Description: | $C_3\times D_{199}$ |
| Order: | \(1194\)\(\medspace = 2 \cdot 3 \cdot 199 \) |
| Index: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Exponent: | \(1194\)\(\medspace = 2 \cdot 3 \cdot 199 \) |
| Generators: |
$a^{99}, a^{132}, b^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{3582}:C_{22}$ |
| Order: | \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \) |
| Exponent: | \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{66}$ |
| Order: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Exponent: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Automorphism Group: | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Outer Automorphisms: | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{199}.C_{33}.C_6^2.C_2$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \) |
| $W$ | $C_{199}:C_{22}$, of order \(4378\)\(\medspace = 2 \cdot 11 \cdot 199 \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_{1194}:C_{22}$ |