Properties

Label 78804.b.3.a1.a1
Order $ 2^{2} \cdot 3 \cdot 11 \cdot 199 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1194}:C_{22}$
Order: \(26268\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \cdot 199 \)
Index: \(3\)
Exponent: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Generators: $a^{18}, b^{2}, a^{132}, b^{199}, a^{99}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{398}:C_{198}$
Order: \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times F_{199}$, of order \(236412\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \cdot 199 \)
$\operatorname{Aut}(H)$ $C_{199}:(C_2^2\times C_{198})$
$W$$C_{199}:C_{66}$, of order \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{398}:C_{198}$
Minimal over-subgroups:$C_{398}:C_{198}$
Maximal under-subgroups:$C_{1194}:C_{11}$$C_{199}:C_{66}$$C_{199}:C_{66}$$C_{398}:C_{22}$$C_3\times D_{398}$$C_2\times C_{66}$

Other information

Möbius function$-1$
Projective image$C_{199}:C_{66}$