Properties

Label 787500000.b.2._.B
Order $ 2^{4} \cdot 3^{2} \cdot 5^{8} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^7.S_7$
Order: \(393750000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
Index: \(2\)
Exponent: \(2100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Generators: $\langle(1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, and nonsolvable. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_5^6.(D_5\times S_7)$
Order: \(787500000\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
Exponent: \(2100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(6300000000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
$\operatorname{Aut}(H)$ Group of order \(6300000000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed