Properties

Label 786432.bq.2.B
Order $ 2^{17} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^8.C_2\wr S_4$
Order: \(393216\)\(\medspace = 2^{17} \cdot 3 \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,8,23,9,2,7,24,10)(11,21,14,19)(12,22,13,20), (7,8)(21,22), (7,8)(9,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_2\wr S_4$
Order: \(786432\)\(\medspace = 2^{18} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(50331648\)\(\medspace = 2^{24} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^8.C_2^6.C_6.C_2^4.C_2^4$, of order \(25165824\)\(\medspace = 2^{23} \cdot 3 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^9.C_2\wr S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed