Subgroup ($H$) information
| Description: | $C_{28}$ | 
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Generators: | $ab^{2}, b^{28}, c$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_{28}.D_{14}$ | 
| Order: | \(784\)\(\medspace = 2^{4} \cdot 7^{2} \) | 
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^2.C_6^2.C_2^3$ | 
| $\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_2\times C_{28}$ | |
| Normalizer: | $C_{14}:C_8$ | |
| Normal closure: | $C_7:C_{28}$ | |
| Core: | $C_{14}$ | |
| Minimal over-subgroups: | $C_7:C_{28}$ | $C_2\times C_{28}$ | 
| Maximal under-subgroups: | $C_{14}$ | $C_4$ | 
Other information
| Number of subgroups in this conjugacy class | $7$ | 
| Möbius function | $0$ | 
| Projective image | $C_{14}.D_{14}$ | 
