Subgroup ($H$) information
| Description: | $D_{14}$ | 
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Generators: | $a, d^{2}, b$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $D_{14}:D_{14}$ | 
| Order: | \(784\)\(\medspace = 2^{4} \cdot 7^{2} \) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^2.C_6^2.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| $\operatorname{res}(S)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) | 
Related subgroups
| Centralizer: | $C_2^2$ | |||
| Normalizer: | $C_2\times D_{14}$ | |||
| Normal closure: | $D_7\times D_{14}$ | |||
| Core: | $C_7$ | |||
| Minimal over-subgroups: | $D_7^2$ | $C_2\times D_{14}$ | ||
| Maximal under-subgroups: | $C_{14}$ | $D_7$ | $D_7$ | $C_2^2$ | 
Other information
| Number of subgroups in this autjugacy class | $56$ | 
| Number of conjugacy classes in this autjugacy class | $4$ | 
| Möbius function | $0$ | 
| Projective image | $D_{14}:D_{14}$ | 
