Properties

Label 77760.r.48.g1
Order $ 2^{2} \cdot 3^{4} \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_3^3:A_4$
Order: \(1620\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,5,7)(2,9,3)(4,6,8), (1,3,6)(10,12,13,11,14), (2,8,5), (4,9,7), (1,6,3)(2,8,5), (3,6)(5,8), (4,9)(5,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:(S_4\times S_5)$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$W$$C_3^3:(C_4\times S_4)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_3^3:(F_5\times S_4)$
Normal closure:$A_5\times C_3^3:A_4$
Core:$C_3^3:A_4$
Minimal over-subgroups:$D_5\times C_3^3:A_4$$C_5\times C_3^3:S_4$$(C_3^2\times C_{15}):S_4$
Maximal under-subgroups:$C_{15}:S_3^2$$C_3^3:C_{15}$$C_3^3:A_4$$C_5\times A_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^3:(S_4\times S_5)$