Properties

Label 77760.p.40.d1
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4\times C_3^3:C_6$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,8,2,4,3,7)(5,9,6)(11,14)(12,13), (1,8,2,4,3,7)(5,9,6)(11,13)(12,14), (3,5,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ Group of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$W$$A_4\times C_3^3:D_6$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_4\times C_3^3:D_6$
Normal closure:$S_3^3:\GL(2,4)$
Core:$C_3^2:S_3$
Minimal over-subgroups:$A_5\times C_3^3:C_6$$A_4\times S_3\wr C_3$$A_4\times C_3^3:D_6$
Maximal under-subgroups:$C_6^2.C_3^3$$A_4\times C_3^2:C_6$$A_4\times C_3^2:S_3$$C_2^2\times C_3^3:C_6$$(C_3\times C_6^2):C_6$$C_3^4:C_6$

Other information

Number of subgroups in this autjugacy class$20$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$A_5\times S_3\wr S_3$