Properties

Label 77760.p.2592.j1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,4,6)(3,5,8), (1,8,4,3,6,5), (1,6,4)(3,8,5)(10,12,14,13,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$S_3\times C_{30}$
Normalizer:$D_{10}\times S_3^2$
Normal closure:$A_5\times C_3^3:S_4$
Core:$C_1$
Minimal over-subgroups:$C_3\times C_{30}$$S_3\times C_{15}$$C_2\times C_{30}$$C_3\times D_{10}$$S_3\times C_{10}$$C_3\times D_{10}$$D_{30}$$D_{30}$$S_3\times C_{10}$
Maximal under-subgroups:$C_{15}$$C_{10}$$C_6$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_5\times S_3\wr S_3$