Properties

Label 77760.p.18.b1
Order $ 2^{5} \cdot 3^{3} \cdot 5 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_6\times \GL(2,4)):C_4$
Order: \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(7,9), (3,5,8), (3,5,8)(7,9)(10,11)(12,13), (4,6)(5,8), (1,4,6), (1,4)(5,8)(7,9)(10,14,13), (1,8,6,5)(3,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times F_9.(C_2\times S_5)$
$W$$A_5\times \SOPlus(4,2)$, of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$S_3^2:C_2^2\times A_5$
Normal closure:$A_5\times S_3\wr S_3$
Core:$A_5$
Minimal over-subgroups:$\GL(2,4):S_3.D_6$$S_3^2:C_2^2\times A_5$
Maximal under-subgroups:$\GL(2,4):D_6$$C_3^2:C_4\times A_5$$C_3^2:C_4\times A_5$$C_2\times C_6^2:C_{12}$$C_3^2:C_4\times D_{10}$$C_2\times C_4\times A_5$$C_3^2:C_4\times D_6$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_5\times S_3\wr S_3$