Properties

Label 77760.p.1080.ce1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4,6)(3,5,8), (7,9), (2,9,7), (4,6)(5,8), (1,8,4,3,6,5)(7,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times A_5$
Normalizer:$S_3\times D_6\times A_5$
Normal closure:$S_3\wr S_3$
Core:$C_1$
Minimal over-subgroups:$C_{10}\times S_3^2$$C_6\times S_3^2$$S_3^3$$D_6^2$
Maximal under-subgroups:$C_6\times S_3$$S_3^2$$S_3^2$$C_6:S_3$$S_3^2$$C_6\times S_3$$S_3^2$$C_2\times D_6$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_5\times S_3\wr S_3$