Subgroup ($H$) information
| Description: | $C_2^3$ | 
| Order: | \(8\)\(\medspace = 2^{3} \) | 
| Index: | \(9720\)\(\medspace = 2^{3} \cdot 3^{5} \cdot 5 \) | 
| Exponent: | \(2\) | 
| Generators: | 
		
    $\langle(2,5)(3,4), (1,6)(2,3)(4,5), (1,6)(2,5)(3,4)(7,14)(8,15)(9,13)(10,12)\rangle$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $C_3^2:D_6\times S_6$ | 
| Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3.S_3\wr C_2.A_6.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $1620$ | 
| Number of conjugacy classes in this autjugacy class | $4$ | 
| Möbius function | not computed | 
| Projective image | $C_3^2:D_6\times S_6$ |