Subgroup ($H$) information
| Description: | $C_2^4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(4860\)\(\medspace = 2^{2} \cdot 3^{5} \cdot 5 \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(1,6)(2,5), (2,5)(3,4), (1,6)(2,5)(3,4)(7,8)(10,12)(14,15), (7,10)(8,12)(9,11)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $C_3^2:D_6\times S_6$ |
| Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3.S_3\wr C_2.A_6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $810$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_3^2:D_6\times S_6$ |