Properties

Label 77760.bo.4860.bi1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(4860\)\(\medspace = 2^{2} \cdot 3^{5} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,6)(3,4), (7,11)(8,10)(9,12), (1,3)(4,6)(7,11)(8,10)(9,12), (1,6)(7,9)(11,12)(14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3\wr C_2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$D_4\times C_2^3$
Normal closure:$C_3^2:(S_3\times S_6)$
Core:$C_1$
Minimal over-subgroups:$C_6:D_4$$C_2\times S_4$$C_2\times S_4$$S_3\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$
Maximal under-subgroups:$C_2^3$$C_2\times C_4$$C_2^3$$D_4$$D_4$

Other information

Number of subgroups in this autjugacy class$2430$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^2:D_6\times S_6$