Subgroup ($H$) information
Description: | $C_2\times D_6$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Index: | \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(7,11,14)(8,10,13)(9,12,15), (1,6)(2,5)(7,11)(8,10)(9,12), (2,5)(3,4), (1,6)(2,5)(3,4)(7,14)(8,15)(9,13)(10,12)\rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.
Ambient group ($G$) information
Description: | $C_3^2:D_6\times S_6$ |
Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3.S_3\wr C_2.A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
$W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $1620$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | not computed |
Projective image | $C_3^2:D_6\times S_6$ |