Properties

Label 77760.bo.3240.fl2
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(7,11,14)(8,10,13)(9,12,15), (1,6)(2,5)(7,11)(8,10)(9,12), (2,5)(3,4), (1,6)(2,5)(3,4)(7,14)(8,15)(9,13)(10,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3\wr C_2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_{12}:C_2^4$
Normal closure:$C_3^2:(S_3\times S_6)$
Core:$C_1$
Minimal over-subgroups:$S_3\times D_6$$C_2^2\times D_6$$C_2^2\times D_6$$C_2^2\times D_6$$S_3\times D_4$$S_3\times D_4$$S_3\times D_4$$S_3\times D_4$
Maximal under-subgroups:$C_2\times C_6$$D_6$$D_6$$D_6$$D_6$$C_2^3$

Other information

Number of subgroups in this autjugacy class$1620$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_3^2:D_6\times S_6$