Properties

Label 7776.jv.72.n1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{18}$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ae^{16}, b^{2}d^{4}, c^{3}, c^{2}d^{2}e^{4}, e^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_{18}:C_6\times S_3$
Normal closure:$C_9:C_6\times S_4$
Core:$C_6$
Minimal over-subgroups:$C_{18}\times S_4$$C_3^2.C_6^2$$S_3\times D_{18}$
Maximal under-subgroups:$C_3\times C_{18}$$S_3\times C_9$$C_2\times C_{18}$$C_6\times S_3$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3^3:S_3\times S_4$